Answer:
The percentage is  [tex]P(X > 145 ) = 44.811\%[/tex]
Step-by-step explanation:
From the question we are told that
  The  mean is  [tex]\mu = 139[/tex]
  The standard deviation is  [tex]\sigma = 46[/tex]
  The weight Scott can bench is  x =  145 pounds
Generally the percentage of statisticians that can bench more than Scott is mathematically represented as
   [tex]P(X > x ) = P(\frac{X - \mu }{\sigma } > \frac{x- 139 }{46 } )[/tex]
 =>  [tex]P(X > 145 ) = P(\frac{X - \mu }{\sigma } > \frac{145 - 139 }{46 } )[/tex]
[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]
  [tex]P(X > 145 ) = P(Z > 0.13043)[/tex]
From the z table Â
The area under the normal curve to the right corresponding to 0.13043 Â is Â
   [tex]P(Z > 0.13043) = 0.44811[/tex]
=> Â [tex]P(X > 145 ) = 0.44811[/tex]
Converting to percentage
   [tex]P(X > 145 ) = 0.44811 * 100[/tex]
=> Â [tex]P(X > 145 ) = 44.811\%[/tex]