Respuesta :
Answer:
X (0, β2) β Xββ²(3, β6) β Xββ³(3, 6);
Y (1, 4) β Yββ²(4, 0) β Yββ³(4, 0);
Zβ(5, 3)β Zββ²(8, β1)β Zββ³(8, 1)
Explanation:
use the rule for reflection: (x,y)β(x,βy)
X'(3,β6)βX''(3,6).
Y'(4,0)βY''(4,0).
Z'(8,β1)βZ''(8,1).
X(0,β2)βX'(3,β6)βX''(3,6)
Y(1,4)βY'(4,0)βY''(4,0)
Z(5,3)βZ'(8,β1)βZ''(8,1)
Answer:
X (0, β2) β Xββ²(3, β6) β Xββ³(3, 6);
Y (1, 4) β Yββ²(4, 0) β Yββ³(4, 0);
Zβ(5, 3)β Zββ²(8, β1)β Zββ³(8, 1)
Explanation:
Use the translation vector <3, β4> Β to determine the rule for translation of the coordinates: (x, y) β (x + 3, y +(β4)).
Apply the rule to translate vertices X (0, β2), Y (1, 4), and Z (5, 3).
X (0, β2) β (0 + 3, β2 + (β4)) β X' (3, β6).
Y (1, 4) β (1 + 3, 4 + (β4)) β Y' (4, 0).
Z (5, 3) β (5 + 3, 3 + (β4)) β Z' (8, β1).
To apply the reflection across x-axis use the rule for reflection: (x, y) β (x, βy).
Apply the reflection rule to the vertices of β³X'Y'Z'.
X ' (3, β6) β X '' (3, 6).
Y ' (4, 0) β Y '' (4, 0).
Z' (8, β1) β Z '' (8, 1).
Therefore,
X (0, β2) β X' (3, β6) β X'' (3, 6)
Y (1, 4) β Y' (4, 0) β Y'' (4, 0)
Z (5, 3) βZ' (8, β1) β Z'' (8, 1)
represents the translation of β³XYZ along vector <3, β4> Β and its reflection across the x-axis.